Robust Vertical Text Layout

ROBUST VERTICAL TEXT LAYOUT

USING THE UNICODE BIDI ALGORITHM TO HANDLE COMPLEXITIES IN TYPESETTING
MULTI-SCRIPT VERTICAL TEXT

by Elika]. Etemad (fantasai)

Abstract

As cross-cultural written communication increases, the technology underlying that
communication needs to handle the intersection of their layout conventions. Vertical text is the
traditional mode of text layout for many East Asian writing systems. It is also used for effects
such as vertical headers in horizontal layout. However, few formatting systems today can do
true vertical text layout, and most of those only can only handle common scripts in right-to-left
columns. Methods for typesetting left-to-right columns or uncommon script combinations such
as Mongolian and Arabic thus often involve unwieldy BIDI overrides and delicate glyph
rendering tweaks. These workarounds are awkward and can break the portability of the
underlying text. The model outlined in this paper uses the intrinsic properties of the characters
and an expansion of Unicode's logic to lay out the text without these hacks. Such a system can
scale to gracefully handle any combination of scripts, can correctly lay out text with any
combination of styling properties, and can integrate well with the layered Unicode + Markup +
Styling design of semantically-tagged documents on the Web. This model, developed for the
next revision of the CSS3 Text Module, is described here as a CSS system, but the concepts can
apply to non-CSS layout systems as well.

This paper focuses on methods for automatically handling character ordering, shaping, and
glyph orientation switches when typesetting lesser-known scripts and unusual script
combinations in vertical layout, without reworking existent horizontal layout algorithms or
adding script-specific new modules. Assumes some familiarity with Unicode BIDIL

Introduction

There is a multitude of different writings sytems in use in the world today. They operate on
different linguistic principles and different graphic principles, and they all present their own
challenges to a multi-script typesetting system: combining characters, contextual shaping,
diacritics, bidirectionality, ligatures, etc. This document focuses on one of these challenges:
Given a sequence of characters in logical order (the order you read them in, not the order they
appear on the page), and given that you already know how to compose the necessary
graphemes, how do you correctly and automatically arrange them into lines, especially for
arbitrarily mixed horizontal and vertical scripts?

27th Internationalization and Unicode Conference 1 Berlin, Germany, April 2005

Robust Vertical Text Layout

Introduction to Vertical Text

To understand how to do vertical text layout, one must first understand what vertical text is.
Vertical Text: A Definition

Vertical text is text flowed into vertical lines instead of horizontal ones.

) i
A
4L =
B3 <t g }
% 3 F i ¥
o o E s =
E RO i
B R U L #
M & '. ¢ + %
A '-‘ g " &
(2R > Qi = -
e Zionkm P #
i :-:" C %
i
B CHR D |
S v B
| FEIEC %
L3 T b I L
= B =ik dlL G = 3
% e $ 6 W 5 ;
Al B A 3 - L
L 3 }. ':’.': :, "; il Al
: ¥ 6o & H
=T 3 m s i fif
il “T S 1% st e o i
ot L =
T - A A i
a

Exerpt from a vertically-set Japanese publication.

Vertical text is not simply graphical rotation.

2

=3

—
——
7 AN

b
graphical vertical
rotation text

Incorrect (graphically-rotated) and correct (upright stacking) vertical layout of Chinese text.

27th Internationalization and Unicode Conference 2 Berlin, Germany, April 2005

Robust Vertical Text Layout

Vertical text layout is not just applied to vertical scripts

il & B olle B i meiag
ey e s ke CEC T g b
e = T ST ¢ - £
o e = B TR - I
= - i -y o o P ot &
iR o SR T R
= Y i o p —_
B e BB e & =
B gieE & =
— - B = =
L = 5
- |i:‘-I al = ! x =]
L) =E= S T |3
(& &5 & == ;
| o L = O | ==
g - ¥ p— o
| e 3 o -
oo e AR k. - L
= 5 ¥ I o
T =, = = —
= = s F (g
(A e i e) o
B g o A o &
= * =] L4
= = W a =
|lzr =" =& 3 =
= &3 = 7
—— = c.
& oo
e M T - =
&5 mE 2 2
A T s
5 ol e i e B
L~ =
2 B o o= = =
AAESH L~ R S = e —
#e &g =
e &= IR -
¥ B S M I =,
e = 9 | &8 F

.'I_I.'hlll]I [==

0] |II.]'.lIt|_‘-!I!!".(5 [PULIO] 03 D) PIOGAY

N0 @) Buod dn-aae s oty s

FUHERS O R (]

n

Has

AELL

MR

[UE S
W] Apaapsi

AL
'-|Ull| |:.

RS
W SIOLOR M

put
fpelinz 1o fyEnog)

1=l

L0 VR Ty

M

A0

oL Aot

il

-1
Lo T
= 1
= a

=

L
L
5 B
i 2
= o
o &
= -
ol
L
|
=
= R
= =t
= =
= Lk
g 9

i
1= 8 =
- I =
B =2
= i T
R
v] o
F 2 2
B -
B 0 =
! L

]

= = o
- F3
n B
o o
B ==k
& e &
¥ -

m = T
g N3
=i

= =2 om
=1 i

] ¥
4
o A
b
7
K
. 3 .
b= i
Ty,
s b
g
r

i =

,i.' 1
| B
o) Gl

Vertical English blockquote in vertically-set Japanese publication.

or just in vertical script contexts.

Hornework 25840

y Guide

Horework 251340

Test & Quiz 271470

Hormewaork 2451740

Horewoaork /29740

Hornework 22050

y Guide

f 24 Stude..

|Ch 12 Rev

fan}

—|[Ch. 12 Stud

)
=

—(Ch 12 Test

»|Ch 13 Yocab Sent

[}

. |Ch 13 SROs

fan}

n|Ch 13 Rev.

ey}

—(Ch 13 Stud

I

I
m

1)
[}

[}
[ax)
= =

1)
[}

[}

1)
[}

o |2 |Clazswark 47440

L]
o

)
=1

on
[}

)
=1

27

2

b
o

'S
N

1135

jan)
iy

i
)

39

41

125

Vertical English in a teacher’s gradebook.

27th Internationalization and Unicode Conference

Berlin, Germany, April 2005

Robust Vertical Text Layout

There are constraints on how you can do it right.

(‘3unpadxa sem [yeym aynb 3, ust siy1)
1Yts 1su 3 bniye myey | mes axdanjud:

Scrambled vertical English where the characters are ordered to face one way while the glyphs are individually
rotated to face the opposite direction.

But there's not just one way to do it.

o]

I EERY - ERHDEERSTHIRE . BEART TSNS
cEBEFDTHREEIRE . cRESLERRESEDE

AER | B C e) Bl - SNED | RERE
ol) HEbmilz

C e YRBEER C KT IREX-BEE-&

X 58 BERN-UAERANEES SISHSHEEY

BOR X% HEE

HB ISR | mR

Two ways of handling vertical Arabic: rotating right (to read upwards) or rotating left (to read downwards).

27th Internationalization and Unicode Conference 4 Berlin, Germany, April 2005

Robust Vertical Text Layout

Using a sideways version of the Unicode Bidirectional Algorithm, where 1tr (‘left-to-right’)
means ‘top-to-bottom” and rt1 (‘right-to-left’) means ‘bottom-to-top’, is one way to do it.

BIDI Analysis of vertically-set traditional Chinese with inline Arabic.

But it doesn't handle all cases.

Langzhong
Lezhan

i.- Longchang
: Luzhou
Meishan
hianyang

| btianzhu
E

Manchong

¥) Province by City

L.
—

planz

beijiang
Panzhihga (Tukow)

Fengi

Fopulation of Sichuan (

Pengzhou (Fengxian)

Ciah wed

Qionglan

63757
22310
2365
226034
TIATH
249007
58,510
6128
257223
53552
240,159
407453
53,123

9. £77

112,11
41042

HE G
[ers .t

Vertical English (bottom-to-top) header on the left of a city-population table; inlining the (top-to-bottom)
Chinese characters corresponding to the region’s name makes the text bidirectional despite both scripts
having left-to-right directionality.

Vertical text makes it possible for two 1tr scripts to go in opposite directions, and an rt1l

script to go in the same direction as an 1tr script.

27th Internationalization and Unicode Conference 5

Berlin, Germany, April 2005

Robust Vertical Text Layout

Perhaps this seems like stretching the limits of multi-script typography a little too much. But

seemingly strange cases do exist.

@ e Ry R FER
FE, 5 REEES FFUEHENE NTH
#MOAXHFREE o SRS o
W eete, CTFRS—SHT QAR
AR HTERR Ak ol
e S S e Rl e e dads e
i fents La

Aol R, SRR
).

) T
B koladlslly o on
UL S U o T i
Jaid) - JBFAb, 35 4b

Ll < (R FARIOIT T AR

Y

.0@®g © ©

T s LI DA flJi}Y!’JH;} S

Wid Bt i,
(HICH).
3, £ 4!

B
-:-l_,.‘i.:..n

SRR B,
Ed i d b

28 6

265

CEMN REMN. AT BT

SOV (R ST b) &Y, SREE. (FIE

Xim iy, s INIATY « —iF4 2 001 250
talloal BRSBTSl ot R

s loeral U TE g S . BTH PR LI 7 2 e

o) b plea iyl

@

®e

CRall g cles JIBY gl

R s ey (IS

SO N L S
e

ol amaL, EALaLI, F

wladl L LR i
B L TWRBBRE, FEUM O BT
AOYG R LT M B AR R
MEE TR T B EENATRA—HRES
—W Wi, el o s ol g
£ T (i) =B G AR B femd | i, s
blospm ol o 2t SPHBEREET, ()
WARER. BLEmAa g o0 L BER.
B PR S IR PO SSRGS VO PR X e
A ETFR EUOIAT, BRED. FHM.
ol b Lol ofgh ot o ot bl oo
UalaoySe ofll RRFBFRELN DA, BREHT

L. .
264

Chinese footnotes on an Arabic text.

Quick — from which side do I start reading this line?

@ e gam iyt EEHEOR (R
FH, o BEEEE. LU I 0T R
0 AXFER =, SRR o
W -, CFEE—RWT TR
TR RMEMEARRAGE—T®, oo

e o A L P P
e fenas U
® i-_:i-p-“ TR s gl T
i) .
B Slesd EHN BEMN.CAZTR

e Lolall sl -

The trouble with reading bidirectional paragraphs.

These footnotes would perhaps be a bit more readable if the typographer took advantage of
Chinese's vertical tradition to make both scripts read in the same direction: top to bottom

within a mixed-script line and right to left between pages.

27th Internationalization and Unicode Conference 6

Berlin, Germany, April 2005

Robust Vertical Text Layout

Analyzing Text Flow

The first step in creating a multi-script layout model is to define the relevant properties of the
layout. Every run of text has three physical properties that describe the way the text flows:

block progression
The direction the lines stack in.

inline progression
The direction characters are ordered in within the line.

OEEE m m
B
E E = 5 B,
O @

glyph orientation
The direction an individual glyph is facing.

R>»Y €&

Once all three properties are known, the text can be laid out.

glyph
orientation

mext

Flow

block
progression

27th Internationalization and Unicode Conference 7 Berlin, Germany, April 2005

Robust Vertical Text Layout

Physical Text Layout

The most straightforward way of getting this information is to ask the user. But there are
several problems with this:

® First of all, typesetting mixed-script text becomes a very tedious task. Each change
in script would require manual intervention to adjust the text flow properties.

® Secondly, as we saw with the scrambled vertical English, not all combinations of
inline-progression and glyph-orientation are valid for a given script. Good
software should make invalid combinations of user input impossible.

® Thirdly, the system doesn't capture the interdependencies among the properties.
Deciding “No, I think this passage would look better as vertical text” and
switching the block-progression setting could throw off the careful setting of
complex bidirectional text. This problem is even worse with web pages: if the
browser does not support vertical text, it will fall back to horizontal, and of course
the author has no chance at this point to reset the text for horizontal context.

Tuts 1su,3 bnne mye)y 1 mes axdaoyus:

Fundamentally, these problems exist because interrelationships among the layout properties
and the nature of the script are realized in the author's mind and not in the system.

Logical Text Layout

The set of inline-progression and glyph-orientation combinations that are valid for a run of
text depends on inherent properties of the text's script. If we embed this information into the
system we can use it to constrain the layout, making it possible to derive one layout property
from the other. This lets us automate much of the inline-progression and glyph-orientation
switching and allows defining layout switches in terms of the relationships among them.

Unicode systems already take advantage of this logical model in horizontal text. For example,
you don't have to manually tell every run of Hebrew to order itself right-to-left because
Unicode already provides that information through its character data tables (which provide
directionality info) and the Unicode BIDI Algorithm (which defines how to use that
directionality info to get a character ordering). We just need to extend the logic to handle
vertical text.

Intrinsic Script Properties

There are three script properties we need to know for logical multi-directional text layout:

® horizontal directionality
® vertical directionality
® bi-orientational transformation

27th Internationalization and Unicode Conference 8 Berlin, Germany, April 2005

Robust Vertical Text Layout

Directionality

A script's directionality is the inline progression direction the script must take in valid text
layout. There are two types of directionality:

horizontal directionality
is the directionality used in horizontal text layout. It can be

® Jeft-to-right (1tr)

|
® right-to-left (rt1)
® none

vertical directionality
is the directionality used in vertical text layout. It can be

® top-to-bottom (ttb)

EEEE

® bottom-to-top (btt)

BEEEH

® none

No directionality means the script does not have a preferred inline progression in that
orientation. For example, while English must go from left to right in horizontal context, it can
go either top to bottom or bottom to top in vertical text (since it doesn't have a vertical
directionality). Like English, Japanese also has a left-to-right horizontal directionality.
However, in vertical context Japanese must only go from top to bottom, even in a left-to-right
block progression.

By script, the CJK ideographs (Han), Yi, Mongolian/Manchu, Hangul, Bopomofo, Hiragana,
and Katakana all have top-to-bottom vertical directionality. Ogham has bottom-to-top vertical
directionality. I believe all other scripts in Unicode have no vertical directionality.

27th Internationalization and Unicode Conference 9 Berlin, Germany, April 2005

Robust Vertical Text Layout

Directionality in Unicode

Aside from generic punctuation, which is neutral, every character in Unicode has been
assigned a horizontal directionality. Unfortunately the standard does not provide similar
data for vertical directionality.

Because Unicode does not have a notion of vertical directionality, vertical-only scripts like
Mongolian have been assigned a left-to-right horizontal directionality. This is the
canonical directionality used in plain text, and it is this inline progression that defines the
glyphs' reference orientation, which we will need later.

Extended values for the 'direction’ property

In addition to per-character directionality values, the Unicode Bidirectional Algorithm needs
to know the overall directionality of the block of text it is ordering. Plain text formatting uses
an heuristic to guess the overall directionality from the first few characters. Higher-level
protocols like HTML and CSS, however, use an explicit setting instead.

Like the Unicode override controls, and the HTML dir attribute, the CSS2 direction
property only had the two horizontal directions: 1tr and rt1. Adding new values allows it to
express vertical directionality as well.

direction
Primary directionality. Can take the following values

ltr
Left-to-right directionality in horizontal text; No inherent directionality in vertical text.
(Horizontal script) Examples: Latin, Tibetan

rtl
Right-to-left directionality in horizontal text; No inherent directionality in vertical text.
(Horizontal script) Examples: Arabic, Hebrew

tthb
Top to bottom directionality in vertical text; No inherent directionality in horizontal text.
(Vertical script) Example: traditional Mongolian

ltr-ttb
Left to right directionality in horizontal text; Top to bottom directionality in vertical text.
(Bi-orientational script) Examples: Han, modern Yi

ltr-btt
Left to right directionality in horizontal text; Bottom to top directionality in vertical text.
(Bi-orientational script) Example: Ogham

27th Internationalization and Unicode Conference 10 Berlin, Germany, April 2005

Robust Vertical Text Layout

Classifying Scripts by Directionality

Scripts can be classified into three orientational categories:

horizontal
Scripts that have horizontal, but not vertical, directionality. Includes: Latin, Arabic, Hebrew,
Devanagari

vertical
Scripts that have vertical, but not horizontal, directionality. Includes: Mongolian, Manchu

bi-orientational
Scripts that have both vertical and horizontal directionality. Includes: Han, Hangul, Yi,
Ogham

Bi-orientational Transformation

For vertical scripts, we also need to know how the glyphs transform when switching from
their standard horizontal configuration to a vertical one. This property is the bi-orientational
transformation and it can be

rotate
Rotate the glyph from horizontal to vertical

1
A A A

90° >
N
>
translate
Translate the glyph from horizontal to vertical

'vYY S
A
\ 4
4

CJK (Chinese/Japanese/Korean) characters translate; they are always upright. Other scripts,
such as Ogham and Mongolian, must be rotated.

27th Internationalization and Unicode Conference 11 Berlin, Germany, April 2005

Robust Vertical Text Layout

Using Script Properties to Imply Directions

Text in a native orientation needs no additional stylistic hints for proper layout: its inline
progression and glyph orientation are both intrinsically mandated by the script. The style
system can figure out how to lay them out from the script properties, so settings for inline
progression and glyph orientation are not necessary.

Text in a foreign orientation doesn't need directionality or glyph overrides either. It just needs
a few hints: whether to translate upright, or, if it's rotated sideways, which side is "up". Given
that, the rules for laying out the text in its native orientation are enough to determine the inline
progression and exact glyph orientation.

With native scripts' layout pre-determined by the script's properties and the non-native scripts
constrained enough that they only need a glyph-rotation hint, the typesetter's intervention
reduces to just two settings for the entire block of text:

® what block progression to use

® how to orient non-native text
(rotate right, rotate left, or stay upright)

Text Orientation Schemes

For horizontal scripts in a vertical orientation, the text is most comfortably laid out as if the
whole text block were merely rotated from the horizontal:

glyph
orientation
=
.5 [Text
o0
25, Flow
S
top-to-bottom
block
progression
ight-to-left. S
.|>.<o g <|9,-n se
2=
.8 uwl ezl L Sa
a S 4 © g
S Dt S %
5 left-to-rights» 2 -~
block
progression

For example, English text in vertical lines that stack from left to right most naturally uses a
glyph orientation that faces left. As a consequence of the script's constraints, the inline
progression then runs from bottom to top. The same text, by the same logic, would in a
right-to-left line stacking context face right and flow within each line from top to bottom.

To make this the default behavior, we can define a setting, ‘natural” that depends on the block

27th Internationalization and Unicode Conference 12 Berlin, Germany, April 2005

Robust Vertical Text Layout

progression to make non-native text always face the top of the line stack. The glyph orientation
and inline progression will thus adapt to whichever block progression happens to take effect.

This layout scheme is most appropriate for dealing with text that has been turned on its side
for layout purposes—as for page headers or captions or table headings. However, a major
reason for laying out text in a non-native orientation is mixing horizontal and vertical scripts,
which introduces the requirement of making the secondary scripts flow well in the context of

the primary script.

For example, a primarily Mongolian document, which has vertical lines stacking left to right,
usually lays its Latin text with the glyphs facing the right.

i -1
1:15%>» *=;‘£
SZoEL.23885% .8
iii%"%é;f%t%i

D sl dnt

{5& §3E%%7-

mi‘i h_:{ a

141

L .

JnpupIny
inp Mgy
'['W-'g «
e
D640
FereRie 3)

-
b

3

™
L
&

Exerpt from a multi-script Mongolian dictionary. Columns read from left to right even though the individual
lines of Latin are facing the opposite direction.

This makes the Latin run with the same inline progression as Mongolian and face the same
direction it does in other East Asian layouts (which have vertical lines stacking right to left),
but the glyphs are facing the bottom of the line stack rather than the top, something they
wouldn't do in a primarily-English paragraph.

Yet another common layout is to keep the horizontal script's glyphs upright and order them
from top to bottom; this is frequently done with Latin-script acronyms in vertical East Asian

text.

-yiygRCERE

EH (B —uy
STRTACEEEN

i (2o B
BN (1) |

Latin acronym in vertical Japanese

27th Internationalization and Unicode Conference 13 Berlin, Germany, April 2005

Robust Vertical Text Layout

To handle these layouts, the style system needs to offer controls for choosing among these
different layout schemes. Note, however, that scripts in their native orientations do not need
these hints; only the non-native ones do. Also, this is only one simple scheme switch here:
there's no need for the designer to set separate absolute inline progression and glyph
orientation properties or to set styling properties on each individual text run of a different
script.

CSS Properties for Text Layout

We can formalize these text layout settings into CSS properties:

® block-progression to set the block progression direction

® text-orientation-vertical to set the text orientation scheme for non-native scripts
block-progression

Block progression (line stacking) direction. Can take the following values:

TB
Top-to-bottom line stacking (horizontal text).
Typically used for most non-East-Asian layout. .

RL
Right-to-left line stacking (vertical text).
Typically used for traditional CJK layout. {m

LR
Left-to-right line stacking (vertical text).
Typically used for traditional Mongolian layout. }

27th Internationalization and Unicode Conference 14 Berlin, Germany, April 2005

Robust Vertical Text Layout

text-orientation-vertical

Glyph orientation scheme to use in vertical text. Does not affect layout of vertical scripts,
only horizontal ones. Can take the following values:

natural

Non-vertical script runs are laid out as if "up" was towards the

top of the line stack (left or right, depending on the block ">'<’ - %.g
rogression in effect). =) PES
P) H '
5 -

left-to-right» <Fight-to-left

block block
progression progression

left

Non-vertical script runs are laid out as if "up" was towards the left side of the
line stack.

right

Non-vertical script runs are laid out as if "up" was towards the right of the
line stack.

upright

Non-vertical scripts' characters read top to bottom, with each grapheme
cluster oriented upright. m

Note: For handling vertical-only scripts in horizontal layout, a text-orientation-horizontal
property is also necessary; it takes effect only when the block progression is top-to-bottom and only

affects non-horizontal scripts like Monglian. To keep the discussion less verbose, we will only cover
the vertical case here.

27th Internationalization and Unicode Conference 15 Berlin, Germany, April 2005

Robust Vertical Text Layout

Summary of Logical Layout Controls

In summary, to lay out a block of arbitrary, mixed-script text, the layout system needs to offer
only three controls:

® overall directionality (BIDI property)
® block progression direction (stylistic property)

® text orientation scheme (stylistic property)

Because of the way correctness constraints are embedded in this layout system, any
combination of the block-progression and text-orientation properties will result in a correct, if
not optimally-configured, layout of any block of arbitrary mixed-script text.

The next step is detailing exactly how to implement such a system.

Line Stacking vs. Line Composition

Laying out text in lines is really two separate problems: composing the lines and stacking
them. As far as line stacking is concerned, the lines are just boxes. The arrangement of items
within the line box doesn't matter. The layout code just needs to rotate and stack the boxes
according to the block-progression settings.

block
gression

Figuring out what to do when different layout elements have different block-progression
values is hard, especially in CSS's fluid layout model—but that's a box layout problem, not a
text layout problem. Let's move on to putting together the text inside the line boxes.

27th Internationalization and Unicode Conference 16 Berlin, Germany, April 2005

Robust Vertical Text Layout

Line Composition

Line composition is the process of laying out the text within a line.

We will assume that all sets of combining characters have been resolved into their respective
grapheme clusters because that process depends only on the logical order of the characters and
is not dependent on layout modes. With that out of the way, there are three other processes in
line composition:

® Ordering the characters
® Rotating the characters
® Shaping the characters

Shaping only happens for some scripts and is wholly dependent on the order and orientation
of the characters, so we will discuss it last.

The Unicode Bidirectional Algorithm

If all the characters in the line were guaranteed to have the same inline progression, then
ordering the characters would be very straightforward. However, because different scripts
have different directionalities, lines can contain a mixture of inline progressions. The Unicode
Bidirectional Algorithm can resolve the order of characters within a mixed-direction line based
on the directionalities assigned to each character.

Unicode Standard Annex #9 (UAX9) defines the BIDI algorithm in terms of the horizontal
left-to-right (1tr or 1) and right-to-left (rt1 or R) directionalities. However, the
character-ordering algorithm itself can handle a model extended with vertical directionalities if
we just abstract it to apply to two arbitrary, opposing directionalities rather than just to
right-to-left and left-to-right.

Mapping Directionalities

To resolve the horizontal and vertical directionalities to the two directionalities used in the
BIDI algorithm, we'll use a map from the concrete directionalities to the abstract
directionalities high-to-low and low-to-high.

The directions left, right, top, and bottom map to high or low based on the values of
text-orientation and block-progression. The mapping must apply to everything:

® the individual character's directionality,

® embedding and override codes,

27th Internationalization and Unicode Conference 17 Berlin, Germany, April 2005

Robust Vertical Text Layout

® the CSS direction values,
e HTML dir attributes,

® ctc.

Note that the algorithm remains unchanged when dealing with vertical text. What changes is
the directionality input.

In vertical context, bi-orientational scripts use their vertical directionality and behave as
vertical, not horizontal, scripts. Han, for example, as a 1tr-ttb script, is treated as ttb (top to
bottom), not 1tr (left to right). The 1tr-ttb value for direction is correspondingly treated
the same way as the value ttb.

Mapping for text-orientation: right

When the text-orientation is right or the text-orientation is natural and the
block-progression is RL

® Map ttb and Itr to htl (high to low)
® Map btt and rtl to Ith (low to high)

high

uondrosug

kel
Pt

low

Mapping for text-orientation: left

When the text-orientation is 1left or the text-orientation is natural and the
block-progression is LR

® Map ttb and rtl to Ith (low to high)
® Map btt and Itr to htl (high to low)

27th Internationalization and Unicode Conference 18 Berlin, Germany, April 2005

Robust Vertical Text Layout

low

.u&j-;
+HmrA—

=

v

s

Inscription

high
Mapping for text-orientation: upright

When the text-orientation is upright

e Map ttb, Itr and rtl to htl (high to low)
® Map btt and to Ith (low to high)

high

;

o Nn S —

(G oo
=

low

Running BIDI

When the BIDI algorithm is run on the text, the algorithm's notion of right will represent our
low and left will represent our high. Notice that the left-to-right directionality always maps to
high-to-low and high-to-low always maps to the algorithm's left-to-right. This is to make sure
numbers, which are processed specially, always come out right.

27th Internationalization and Unicode Conference 19 Berlin, Germany, April 2005

Robust Vertical Text Layout
That takes care of the ordering. Next we need to determine each character's glyph orientation.

Glyph Orientation

Before the system can paint the text (or even do shaping and alignment), it needs to know how
to rotate (or not rotate) the glyphs. For vertical and bi-orientational scripts, the glyph
orientation is derived from the script properties. For horizontal scripts, it's given by the
text-orientation property. Glyph rotation is always affects each grapheme cluster together as
one unit.

For vertical scripts such as Mongolian, facing up (“upright”) is defined to be the orientation
used when the text is set horizontally using it's Unicode-defined directionality (in this case, 1tr)
even though this may not be the true upright position of the glyph. This is because fonts are
generally encoded for use in horizontal text, not vertical text.

Mongolian glyph

facing up |truly upright

n | >

Transformations for punctuation should be handled by using the vertical glyph variants given
in the font, but only when the primary direction of the text has a vertical directionality
component or when the text-orientation is upright. (If the text is primarily horizontal text
rotated sideways, then the punctuation should likewise be horizontal punctuation rotated
sideways.)

27th Internationalization and Unicode Conference 20 Berlin, Germany, April 2005

Robust Vertical Text Layout

Vertical Scripts: Deriving Glyph Orientation

Han and Kana and Hangul and Yi need to be kept upright (0° rotation) because they use the
same orientation in both horizontal and vertical text. Mongolian (and Ogham), however, rotate
from one context to the other and so their glyphs must be rotated 90° from their horizontal
orientation when used in vertical context. Given the script's horizontal and vertical
directionalities and its bi-orientational transformation:

System’s Knowledge of Vertical Scripts’ Properties

Han/Hangul/Kana/ Mongolian/
g. 5 Ogham
Yi Manchu
(cannonical) horizontal
. . . ltr (1tr) ltr
directionality
vertical directionality tth ttb btt
transformation translation rotation rotation
the glyph orientation can be derived as follows:
System’s Derivation of Vertical Scripts’ Orientation
Han/
Hangul/ Mongolian/Manchu Ogham
Kana/Yi
g‘yph- or\glr?t;;?ion origm’;’:ion
horizontal orientation "
(vector direction)
Rotate with inline Rotate with inline
glyph transformation Static progression: 90° cw from | progressio: 90° ccw
Itr to ttb from ltr to btt
4N }
vertical orientation 4

27th Internationalization and Unicode Conference 21 Berlin, Germany, April 2005

Robust Vertical Text Layout

Horizontal Scripts: Applying Text Orientation

Horizontal scripts get their glyph rotation directly from the style properties:

For text-orientation: right
(or text-orientation: natural when the block-progression is RL)

Rotate horizontal scripts' grapheme clusters 90° to the right.

[}
A A A

|:90° >
>_

>

For text-orientation: left
(or text-orientation: natural when the block-progression is RL)

Rotate horizontal scripts' grapheme clusters 90° to the left.

|
A A A

p
_ €

<
For text-orientation: upright
Keep glyphs for horizontal scripts upright and stack grapheme clusters vertically.

2o |
A

27th Internationalization and Unicode Conference 22 Berlin, Germany, April 2005

Robust Vertical Text Layout

Character Shaping

Character shaping is the process of selecting, based on context, which of several glyph variants
of a letter should be used. This is typical of cursive scripts like Arabic and Mongolian, in which
the shape of a letter depends on whether it comes at the start of a word, in the middle of a
word, or at the end of a word.

final medial initial

C &*”
isolated
C’t&

According to Unicode BIDI, character shaping occurs after BIDI reordering: the Arabic
character shaped as an “initial” will always be on the right, even if the text is given a
left-to-right override. This ensures that the letters always visually connect. (If shaping
happened before reordering, an initial form on the right side of the word would wind up on
the left and be trying to connect to nothing.)

Reverse Shaping

If a shaping script's characters are ordered in reverse because the text's directionality maps
within the BIDI algorithm to a directionality other than its standard horizontal one, then the
shaping needs to be done in reverse also. This happens, for example, with Mongolian when its
top-to-bottom directionality maps to the BIDI algorithm's notion of right-to-left. Mongolian's
canonical horizontal directionality is left-to-right, so normally it would map to left-to-right
and the shaping algorithm is designed for that case.

To cope with this problem, we can isolate the affected string and either

® invert it, shape it, then un-invert it, or

e tell the shaping function to shape in reverse: to shape characters in the initial positions as
finals and characters in the final positions as initials

The result of this process in a normal orientation would be a lot of disconnected letters.
However, once the glyph orientation is applied, the glyphs will connect properly.

27th Internationalization and Unicode Conference 23 Berlin, Germany, April 2005

Robust Vertical Text Layout

D

O W:' "] gdj.&lum

Arabic and Mongolian, both shaping scripts, can go in the same direction or in opposite
directions, so blindly reverse-shaping the entire character string doesn't work. However,
shaping occurs only within each directional level run, and it is also constrained to runs of text
in the same script; Mongolian characters, from Arabic's point of view, form as concrete a
boundary as Latin ones do. It is therefore possible to break up the text into pieces that have
characters from no more than one shaping-affected script without compromising the accuracy
of the shaping. Each of these pieces can then be shaped individually, in reverse if necessary.

Finishing Off

Once the line is composed, all that remains is to lock its high and low ends to the appropriate
sides of the block and stack the lines according to the block-progression setting.

Data Missing from Unicode

In addition to knowing the text, its primary directionality, and its styling properties, the
implementation needs to know something about the characters themselves to be able to take
advantage of the logical model. For each character, the following information must be
available to the text layout algorithm:

® horizontal directionality
® vertical directionality

® for vertical scripts, the transformation between horizontal and vertical orientations

Unicode currently provides horizontal directionality, but not vertical directionality or
transformation. Also, for the model to be complete, Unicode would have to provide BIDI
control characters for the extended directionality values equivalent to the ones for
horizontal-only directionality settings.

27th Internationalization and Unicode Conference 24 Berlin, Germany, April 2005

Robust Vertical Text Layout

Conclusion

There are a lot of cool, unusual, and useful ways of combining writing systems. By using
constraints inherent in each script, logical text layout creates a framework for mixed-script
typesetting that is flexible enough to handle more than just the basic possibilities, yet
automatic and robust enough to be practical. Because it does not rely on directionality
overrides or special fonts to work, the underlying text is portable and can be used, stripped of
all styling information, in other Unicode contexts.

Acknowledgements

Thanks go out to:

® Martin Heijdra at the East Asian Library, for his guidance, expertise, and enthusiasm. I
had never imagined that the bibliographer helping me find books would turn out to be
an expert on international typography and Mongolian in particular.

® Jan Hickson, the members of the www-style mailing list, the members of the CSS
Working Group, and the contributors to the Mozilla Project for tempering my technical
skills and CSS knowledge over the years

® The CSS Working Group for giving me a chance to fix everything I found wrong in the
CSS3 Text drafts.

e Hikon Wium Lie and Opera Software for supporting me in this project, to the point of
even paying me over the summer to work on it. I only wish it hadn't taken so long so that
I could spend more time on QA. ©

® Brian W. Kernighan for taking on the role of my project advisor within the Princeton
Computer Science Department.

27th Internationalization and Unicode Conference 25 Berlin, Germany, April 2005

Robust Vertical Text Layout

Bibliography

® Bert Bos; Hdkon Wium Lie; Chris Lilley; Ian Jacobs. Cascading Style Sheets, level 2. 1998.
W3C Recommendation. URL: http://www.w3.org/TR/REC-CSS2

® Davis, Mark. The Bidirectional Algorithm. 17 April 2003. Unicode Standard Annex #9. URL:
http://www.unicode.org/unicode/reports/tr9/tr9-11

® Heijdra, Martinus. Mongolian Text Layout. Spring 2003-present.

® Suignard, Michel. CSS3 Text. May 2003. W3C Candidate Recommendation. URL:
http://www.w3.0rg/TR/2003/CR-css3-text-20030514/

® The Unicode Consortium. The Unicode Standard: Version 4.0.0. URL:
http://www .unicode.org/unicode/standard/versions/
enumeratedversions.html#Unicode_4 0 0

27th Internationalization and Unicode Conference 26 Berlin, Germany, April 2005

